Reply
New member

Re: Arc flash

A few points on the arc flash analysis.

 

Yes, a lot of people are still hearing it for the first time.  It was only in 2002 that NFPA & IEEE put the standards together to define how an arc flash should be done.  OSHA has indirectly adopted the standards by stating that workers must be warned about electrical hazards and the proper PPE to wear and referencing NFPA.   The only way to properly warn the workers of the threat level and required PPE is to do an arc flash analysis with the exception of using the NFPA 70 E tables.  The problem with the NFPA 70E tables is that in order to use them, you must already know the short circuit current and clearning time of your protective devices and the results of that must fit within the parameters of the chart (read the footnotes).  We have never found anybody who can actually use the charts as they were designed, although they are a good reference point for PPE safety if you haven't got an arc flash analysis done yet and need to approach an energized part.

 

Getting an arc flash analysis done is not cheap internally or externally, but it's a heck of a lot cheaper than the damages if there is an accident and the analysis wasn't done.  OSHA has been laying down heavy fines in these cases, not to mention the legal and insurance costs. 

 

No, you don't need to be a PE or outsource the arc flash analysis, however, there are a lot of challenges in doing an analysis internally, the start of which is putting money up front for the software and learning to use it which can cost $10K - $30K and several weeks for that process alone.  The bigger problem, however, is the simple inexperience of doing an arc flash analysis.  It takes literally a dozen jobs under the direction of a PE with a lot of arc flash experience to to do a job right.  The biggest problems we see with self- analysis are; a) data collected isn't accurate  b) analysis is only done at top voltage loads, not the lowest, which can be more dangerous  c) lack of ability to provide recommendations on how to make minor changes to something like the setting of a breaker to take it from Cat 4 down to Cat 2.   We see companies buying sets of expensive Cat 4 PPE based on the outcome of the analysis when really, a few minor adjustments or a change in a breaker might eliminate both the need for the Cat 4 equipment and more importantly, reduces the hazard for their employees.

 

And here is the million dollar question (or $9 million question as the estimated cost of an arc flash accident involving serious injury).  If you do the analysis yourself and there is an accident and a forensic engineer comes in and finds out that the analysis was done wrong, who do you think is going to be held liable?

 

If you have any questions, feel free to contact me or you can get more information on our web sites www.martinarcflash.com or www.martechnical.com

 

Jim Schuster

VP

Martin Technical

 

Contributor

Re: Arc flash

There is a revised version of NFPA 70E that deals extensively with arc flash.  you can read about the newest release here: http://www.dynagen.ca/tipsntrends0509/nfpa.html
Paul Wareham, P.Eng.
DynaGen Technologies Inc
Your Partner for Power Control Solutions
Contributor

Re: Arc flash

Sorry for being a little slow in getting back. But thanks for the calc. That is what I was looking for!

 

Yes, Plantpro, I agree an engineer has to end up doing the arc-flash study. I don't think 70E demands it, however, who else is going to do the short circuit studies, arc-flash calcs and, most importantly stamp the drawings that are produced. I have seen some DIY arc-analysis items on the web but have wondered. I played with the demos of Easypower and SKM tools. Both extremely powerful.

 

Thanks again!

Regular Contributor

Re: Arc flash

Many if not all states will implement Arc flash regulations in 2009. This means that you'll have to have a Arc flash study done by a engineering firm. The old self analysis will no longer be good enough. I have over 100k budgeted .
Contributor

Re: Arc flash

For Short circuit calculation on Alternator one should aware of the sub transient reactance value of the alter nator ( Xd") . Itis available on Data sheet of Alternator .

 

Isc= Alternator Full load Current * 100/ Xd" -- It is in pu

Contributor

Re: Arc flash

The "bible" on arc-flash protection, (and electrical safety), is NFPA 70E, Standard for Electrical Safety in Employee Workplaces. We calculate the amount of energy that will be realeased in an arc-flash accident at a given point, (incident energy), and can then use the 70E standard to assign the energy values to a given Hazard Risk Category, and select the proper work practices and appropriate PPE to minimize injury based on that Hazard Risk Category. The problem I have with standby power generation is trying to get accurate numbers on how much short-circuit current a generator can produce. I understand the characteristics of a generator output, but have not run across any short-circuit numbers or calculation methods. Anybody have any experience on short-circuit calculations for generators? 
New member

Re: Arc flash

An arc flash is a voltage breakdown of the resistance of air resulting in an arc which can occur where there is sufficient voltage in an electrical system and a path to ground or lower voltage. An arc flash with 1000 amps or more can cause substantial damage, fire or injury. The massive energy released in the fault instantly vaporizes the metal conductors involved, blasting molten metal and expanding plasma outward with extreme force. A typical arc flash incident can be inconsequential but could conceivably easily produce a more severe explosion. The result of the violent event can cause destruction of equipment involved, fire, and injury not only to the worker but also to nearby people.

In addition to the explosive blast of such a fault, destruction also arises from the intense radiant heat produced by the arc. The metal plasma arc produces tremendous amounts of light energy from far infrared to ultraviolet. Surfaces of nearby people and objects absorb this energy and are instantly heated to vaporizing temperatures. The effects of this can be seen on adjacent walls and equipment - they are often ablated and eroded from the radiant effects.

Contributor

Arc flash

I am starting to hear the term arc flash more and more. What exactly is it, and why should it concern me?